KI6

Re	g.	N	0:	
TTC	5 •	TA	U.	

g. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech III Year II Semester Supplementary Examinations February-2022

HEAT TRANSFER

(Mechanical Engineering)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 a List the basic laws which govern the heat transfer.6Mb Name and explain the mechanism of heat transfer.6M

OR

- 2 a Distinguish between conduction, convection and radiation modes of heat 6M transfer
 - b Calculate the rate of heat transfer per unit area through a copper plate 45 mm
 6M thick, whose one face is maintained at 350 °C and the other face at 50 °C. Take thermal conductivity of copper as 370 W/m °C.

UNIT-II

3 A reactor's wall, 320 mm thick, is made up of an inner layer of fire brick (k= 12M 0.84W/m 0 C) covered with a layer of insulation (k = 0.16 W/m 0 C). The reactor operates at a temperature of 1325 0 C and the ambient temperature is 25 0 C. Determine the thickness of fire brick and insulation which gives minimum heat loss.

OR

A spherical shaped vessel of 1.4 m diameter is 90 mm thick. Find the rate of heat 12M leakage, if the temperature difference between the inner and outer surface is 220 ^oC. Thermal conductivity of the material of the sphere is 0.083W/m ^oC

UNIT-III

- 5 a What is convective heat transfer? Distinguish between free and forced 6M convection
 - **b** Derive the expression for Reynolds number and how flows are determined by **6M** Reynolds number?

OR

6 Assuming that a man can be represented by a cylinder 350 mm in diameter and 1.65 12M m high with a surface temperature of 28 °C. Calculate the heat he would lose while standing in a 30 km/h wind at 12 °C.

UNIT-IV

7 a Explain briefly the condensation mechanism on the vertical plate
8M
b Explain briefly the various regimes of saturated pool boiling with diagram
4M

Q.P. Code: 16ME320

OR

- 8 A vertical tube of 60 mm outside diameter and 1.2 m long is exposed to steam at 12 M atmospheric pressure. The outer surface of the tube is maintained at a temperature of 50
 - ⁰C by circulated cold water through the tube. Calculate the following
 - i). The rate of heat transfer to the coolant, and
 - ii). The rate of condensation of steam

UNIT-V

9 State the following law:

i) Wien's displacement law ii) Stefan Boltzmann law iii. Krichhoff's law.

OR

- 10 Calculate the following for an industrial furnace in the form of a black body and 12M emitting radiation at 2500 °C.
 - i) Monochromatic emissive power at 1.2 µm length

ii) Wavelength at which the emissive is maximum

iii) Maximum emissive power

*** END ***

